Table 1.—Solar radiation intensities during June, 1928 [Gram-calories per minute per square centimeter of normal surface] ### Washington, D. C. | | | | | 8 | Sun's z | enith d | listanc | e | | | | |---------------------------|----------------------------|-------|-----------------|---------------|-------------------------|----------------|---------|-------|-------|-------|----------------------------| | . | 8 a.m. | 78.7° | 75.7° | 70.7° | 60.0° | 0.0° | 60.0° | 70.7° | 75.7° | 78.7° | Noor | | Date | 75th | | | | A | ir mas | BS . | | | | Loca | | | mer.
time | | A. M. | | | | P. M. | | | | | | | e. | 5.0 | 4.0 | 3.0 | 2.0 | ¹ 1.0 | 2.0 | 3.0 | 4.0 | 5.0 | e | | June 8 | mm.
11.38
13.61 | cal. | cal.
0.68 | cal.
0.84 | cal.
0.89 | cal. | cal. | cal. | cal. | cal. | mm.
10. 97
14. 10 | | 14
15
16 | 20. 24
12. 68
6. 76 | | | | 1.06 | 1.32
1.25 | | | | | 16, 20
12, 24
5, 79 | | 25
27
28 | 17. 37
11. 38
13. 61 | | 0. 69
0. 65 | | 1. 12
1. 08
1. 00 | 1. 28
1. 30 | | | | | 16. 79
10. 59
11. 38 | | 30
Means
Departures | 15. 65 |
 | (0.67)
+0.02 | 0.84
+0.09 | | | <u></u> | |
 | | 12. 6 | #### Madison, Wis. | June 2 | 5. 79
6. 27 | | | 1. 26
1. 06 | |
 |
 | 6. 27
9. 83 | |---------------------|----------------------|-----------------------|-------------------|-----------------|---------------|------|------|-------------------------| | 14
15
26 | 9.47
7.29
7.29 |
0. 87 | 0.94 | 1. 13 | 1.36
1.35 |
 |
 | 6. 76
7. 29
9. 14 | | Means
Departures | |
(0, 87)
-0, 01 | (0, 98)
+0, 01 | 1, 16
—0, 05 | 1.40
+0.08 |
 |
 | | Lincoln, Nebr. | July 1 | | | 0. 95
0. 96
0. 80
0. 90
+0. 12 | 1. 04
0. 98
1. 00 | 1. 20
1. 15
1. 17 | 1. 44
1. 35 |
 | 0. 92
 |
6. 76
9. 14
10. 59
6. 76 | |--------|---|---|--|-------------------------|-------------------------|----------------|------|-----------|---------------------------------------| | | l | 1 | <u> </u> | | | <u> </u> | | <u> </u> |
 | ¹ Extrapolated. Table 2.—Solar and sky radiation received on a horizontal surface [Gram-calories per square centimeter of horizontal surface] | Week be- | | Ave | erage dai | ly radiat | ion | | | e daily d
om norm | eparture
ial | |---------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|---------------------------|-----------------------------------|-------------------------------------|-------------------------------------| | ginning— | Wash-
ington | Madi-
son | Lin-
coln | Chi-
cago | New
York | Twin
Falls | Wash-
ington | Madi-
son | Lin-
coln | | 1928 June 4 June 11 June 18 June 25 1 | cal.
449
469
345
552 | cal.
394
573
364
438 | cal.
393
550
440
498 | cal.
250
522
290
280 | cal.
336
485
218
393 | cal.
490
684
670 | cal.
-33
-23
-124
+36 | cal.
-119
+67
-155
-101 | cal.
-164
+36
-111
-107 | | Excess or d | leficiency | since fir | st of year | r on July | 1 | | -1, 532 | -480 | -1, 346 | ¹8-day mean. ## POSITIONS AND AREAS OF SUN SPOTS [Communicated by Capt. C. S. Freeman, Superintendent U. S. Naval Observatory, [Data furnished by Naval Observatory, in cooperation with Harvard, Yerkes, and Mount Wilson Observatories] [The differences of longitude are measured from central meridian, positive west. The north latitudes are plus. Areas are corrected for foreshortening and are expressed in millionths of sun's visible hemisphere. The total area, including spots and groups, is given for each day in the last column] | . | Eastern
standar |) | [eliograp] | oic | Aı | rea | Total
area | |---|--------------------|---|--|---|----------------|--|--------------------| | Date | civil
time | Diff.
long. | Longi-
tude | Lati-
tude | Spot | Group | for
each
day | | 1928
une l (Naval Observa-
tory). | h. m
11 3 | $\begin{bmatrix} -33.0 \\ -27.5 \\ -21.0 \end{bmatrix}$ | 182. 7
188. 2
194. 7 | -17.5
+8.0
+8.5 | 123 | 62
15 | | | | | -16.0
-7.5
+0.5
+13.0
+36.0
+66.5
+69.0 | 199. 7
208. 2
216. 2
228. 7
251. 7
282. 2
284. 7 | -13. 0
+10. 5
+8. 5
-10. 5
+9. 0
+12. 0
-17. 0 | 15
46
62 | 432
62
46
40 | | | une 2 (Naval Observa- | 11 1 | +78.0 | 293. 7
134. 7 | -19.0
+15.0 | 77 | 25 | 9: | | tory). | | -36.0
-34.0
-20.5
-8.5 | 163. 2
166. 7
168. 7
182. 2
194. 2 | -9.0
+7.5
+11.0
-17.0
+8.0 | 9 | 9
31
37 | | | | | $ \begin{array}{r} -3.5 \\ +6.0 \\ +13.0 \\ +28.0 \end{array} $ | 199. 2
208. 7
215. 7
230. 7 | $ \begin{array}{r} -13.0 \\ +10.5 \\ +9.0 \\ -10.5 \end{array} $ | | 340
31
15
6 | | | une 3 (Naval Observa- | 12 2 | | 252. 2
282. 7
169. 8 | +9.0
+11.0
+11.0 | 31 | 62 | 6 | | tory). | | $ \begin{array}{r} -7.5 \\ +6.0 \\ +10.0 \\ +20.0 \\ +28.5 \end{array} $ | 181. 3
194. 8
198. 8
208. 8
217. 3 | -17.0
+8.0
-13.5
+10.5
+9.5 | 31 | 216
278
15
37 | | | une 4 (Mount Wilson) | 11 3 | +29. 0
+62. 0 | 217. 8
250. 8
146. 6 | $ \begin{array}{c c} -10.0 \\ +9.0 \\ +21.0 \end{array} $ | 31 | 15 | ē | | une 4 (Module Wilson) | 11 0 | -6. 0
+6. 0
+19. 0
+23. 0
+32. 0
+37. 0
+42. 0 | 170. 1
182. 1
195. 1
199. 1
208. 1
213. 1
218. 1 | +11.0
-16.0
+8.5
-13.0
-20.0
+8.0
-10.0 | | 45
27
347
413
14
33
15 | 8 | | une 5 (Naval Observa-
tory). | 11 3 | | 147. 8
165. 3
169. 8
173. 8
181. 3
194. 3 | +19.5
+9.0
+8.5
+11.0
-18.5
+8.0 | 6 | 62
62
46
31
154 | | | | | +35. 0
+52. 0
+54. 0 | 197. 8
214. 8
216. 8 | -13. 0
+9. 0
-10. 0 | | 216
9
46 | 6 | | une 6 (Naval Observa-
tory). | 12 | $ \begin{vmatrix} -79.0 \\ -2.5 \\ +1.5 \end{vmatrix} $ | 70. 3
146. 8
150. 8 | $ \begin{array}{c c} -7.0 \\ +20.0 \\ +19.0 \end{array} $ | 15
37 | 31 | | | | | +15.5
+20.5
+31.0
+47.0 | 164. 8
169. 8
180. 3
196. 3 | +8.0
+8.0
-18.0
+7.5 | 15 | 185
139
93 | | | and T. (Novel Observe | | +48.0
+49.5
+68.0 | 197. 3
198. 8
217. 3 | -14.5
-11.5
-10.0 | 77 | 37
46 | 6 | | une 7 (Naval Observa-
tory). | 11 4 | 3 -72.0
 -65.0
 -42.5
 +11.0
 +16.0 | 64.3
71.3
93.8
147.3
152.3 | $ \begin{array}{r} -11.0 \\ -12.0 \\ -11.0 \\ +20.0 \\ +18.5 \end{array} $ | 154
15
 | 12
31 | | | | | +16.0
+28.0
+32.0
+35.0
+44.5 | 164. 3
168. 3
171. 3
180. 8 | +18.5
+7.5
+10.5
+8.0
-17.5 | 139 | 123 | | | | | +59. 0
+60. 5
+63. 5 | 195. 3
196. 8
199. 8
213. 8 | $ \begin{array}{c c} -17.5 \\ +7.0 \\ -15.0 \\ -11.5 \\ -20.0 \end{array} $ | 77 31 | 154
31 | | ## POSITIONS AND AREAS OF SUN SPOTS—Continued [Communicated by Capt. C. S. Freeman, Superintendent U. S. Naval Observatory] [Data furnished by Naval Observatory, in cooperation with Harvard, Yerkes, and Mount Wilson Observatories] [The differences of longitude are measured from central meridian, positive west. The north latitudes are plus. Areas are corrected for foreshortening and are expressed in millionths of sun's visible hemisphere. The total area, including spots and groups, is given for each day in the last column] ### POSITIONS AND AREAS OF SUN SPOTS-Continued [Communicated by Capt. C. S. Freeman, Superintendent U. S. Naval Observatory] [Data furnished by Naval Observatory, in cooperation with Harvard, Yerkes, and Mount Wilson Observatories] [The differences of longitude are measured from central meridian, positive west. The north latitudes are plus. Areas are corrected for foreshortening and are expressed in millionths of sun's visible hemisphere. The total area, including spots and groups, is given for each day in the last column! | | Eastern | н | eliograph | ie | Aı | ea. | Total
area | | Eastern
standard | H | eliograpi | nie | Aı | ea. | Total
area | |-----------------------------------|---------------------------|--|--|---|------------------------------------|--|--------------------|-----------------------------------|---------------------|--|--|---|-----------|--|--------------------| | Date | standard
civil
time | Diff.
long. | Longi-
tude | Lati-
tude | Spot | Group | for
each
day | Date | civil
time | Diff.
long. | Longi-
tude | Lati-
tude | Spot | Group | for
each
day | | 1928 | , | | | | | | | 1928 | h. m. | | | | | | | | une 8 (Naval Observa-
tory.) | h. m.
11 50 | -59. 0
-52. 0
+21. 5
+30. 0
+41. 5
+48. 0
+50. 5
+72. 5
+77. 5 | 64. 0
71. 0
144. 5
153. 0
164. 5
171. 0
173. 5
195. 5
200. 5 | -11.0
-12.0
+20.5
+18.5
+8.0
+10.5
+6.5
-11.0 | 15
77
185
62
108
93 | 93
31
170 | 834 | June 22 (Mount Wilson) | 10 0 | -86. 0
-76. 0
-66. 0
-54. 0
-27. 5
-14. 0
-6. 5
-3. 0
+67. 0
+70. 5 | 212. 6
222. 6
232. 6
244. 6
271. 1
284. 6
292. 1
295. 6
9. 1 | -20.0
+10.5
-12.0
+9.0
+13.0
+10.0
+10.0
+12.5
+17.0
-16.0 | 235 | 7
5
6
15
253
19 | | | une 9 (Naval Observa-
tory). | 11 9 | -46.0
+37.5
+41.5
+54.5
+61.5
+65.0 | 64. I
147. 6
154. 6
164. 6
171. 6
175. 1 | -10.5
+20.0
+18.5
+7.5
+8.0
+10.5 | 15
62
247 | 77
185
77 | 663 | June 23 (Mount Wilson) | 9 45 | +73. 0
-82. 0
-73. 0
-63. 0
-53. 0
-40. 0 | 203. 5
212. 5
222. 5
232. 5
245. 5 | +12.0
+15.0
-21.0
+9.0
-12.5
+7.0 | 934 | 152
513
64 | 1,68 | | nne 10 (Naval Observa-
tory.) | 11 26 | $ \begin{array}{r} -31.0 \\ -22.5 \\ +60.0 \\ +68.5 \\ +73.5 \\ +75.0 \end{array} $ | 65. 7
74. 2
156. 7
165. 2
170. 2
171. 7 | $ \begin{array}{r} -10.5 \\ -10.5 \\ +19.0 \\ +8.0 \\ +8.0 \\ +10.5 \end{array} $ | 77
170
247 | 46
9 | 703 | | | $ \begin{array}{r} -15.0 \\ -4.0 \\ +7.5 \\ +16.0 \\ +80.0 \\ +85.0 \end{array} $ | 270. 5
281. 5
293. 0
301. 5
5. 5
10. 5 | +14.0
+9.0
+11.0
+12.0
+18.0
+13.0 | 16
168 | 8
8
339
9 | 1, 52 | | nne 11 (Harvard) | 11 11 | +72.0 | 155.0 | +18.5 | 54 | | 54 | June 24 (Naval Observa-
tory). | 11 18 | -72.0
-63.0 | 199. 5
208. 5 | +17.5
+14.5 | | 556
62 | | | une 12 (Harvard) | 11 53 | -5.5 | 65.0 | -10.0 | | 31 | 31 | | | -62. 5
-55. 0 | 209. 0
216. 5 | -21.5 -20.0 | 278 | 154 | | | une 13 (Naval Observa-
tory). | 12 38 | -50.0
-46.5
-45.0
+7.0 | 6.3
9.8
11.3
63.3 | +12.0
+12.0
-10.5
-10.5 | | 46
31
9
25 | iii | | | -51. 0
-47. 0
-38. 0
-25. 0
-14. 0 | 220. 5
224. 5
233. 5
246. 5
257. 5 | +9.5
+11.5
-12.0
+8.0
+3.5 | 108 | 77
185
93
31 | | | une 14 (Naval Observa-
tory. | 11 43 | -37. 5
-36. 0
+19. 5 | 6. 1
7. 6
63. 1 | +12.0
+12.5
-10.0 | 3 | 170
46 | 219 | June 25 (Naval Observa- | 12 15 | +1.5
+21.5
-58.0 | 273. 0
293. 0
199. 7 | +13.5
+9.5
+17.5 |
 | 62
247
586 | 1, 8 | | une 15 (Naval Observa-
tory). | 11 43 | -59. 5
-23. 0
-20. 5
-17. 5
-12. 0 | 330. 9
7. 4
9. 9
12. 9
18. 4 | +16.0
+12.0
-15.5
+12.5
-12.5 | 123 | 201
46 | 382 | tory). | | -50. 5
-49. 0
-41. 5
-39. 0
-33. 0
-25. 0 | 207. 2
208. 7
216. 2
218. 7
224. 7
232. 7 | $\begin{array}{c} -21.5 \\ +14.0 \\ -20.5 \\ +9.5 \\ +11.5 \\ -12.0 \end{array}$ | 40
108 | 108
93
309 | | | fune 16 (Naval Observa-
tory). | 11 16 | -85.0
-9.5
-9.5
-6.5
-4.5
+0.5 | 292. 4
7. 9
7. 9
10. 9
12. 9
17. 9 | +9.0
+11.5
-16.0
-15.0
+12.0
-12.5 | 154
139
139 | 154
93
6 | 685 | June 26 (Naval Observa-
tory). | 11 42 | -10.5
-2.0
+14.5
+35.0
-72.5
-46.0
-38.5 | 247. 2
255. 7
272. 2
292. 7
172. 3
198. 8
206. 3 | +8.0
+3.5
+13.5
+9.5
+8.0
+17.5
-22.0 | 62 | 139
31
77
216 | 1, 8' | | June 17 (Naval Observa-
tory). | 11 33 | -71. 5
-67. 0
+2. 5
+3. 5
+7. 5
+8. 5 | 292. 5
297. 0
6. 5
7. 5
11. 5
12. 5 | +9.0
+13.0
-16.5
+11.5
-15.5
+12.0 | 185
 | 123
93
62 | 787 | | | -37. 0
-28. 0
-25. 5
-20. 0
-12. 0
-6. 5
+. 5 | 207. 8
216. 8
219. 3
224. 8
232. 8
238. 3
245. 3 | +14.0
-20.5
+9.5
+11.5
-12.0
-11.0
+8.0 | 62 | 370
15
133
25
31 | | | June 18 (Naval Observa- | 11 37 | -65. 0
-58. 5
-53. 5
+12. 0
+16. 0
+17. 0
+18. 5 | 285. 7
292. 2
297. 2
2. 7
6. 7
7. 7
9. 2 | +13.5
+9.0
+13.0
+7.0
+18.0
+11.0
-17.0 | 6 | 170
62
6
37
46
170 | | June 27 (Naval Observa-
tory). | 11 46 | +5.5
+11.0
+26.0
+48.0
-72.5
-60.0
-36.5 | 250. 3
250. 3
255. 8
270. 8
292. 8
159. 0
171. 5
195. 0 | +8.0
+3.5
+12.0
+9.5
+19.0
+9.0 | | 31
216
123 | 1, 7 | | June 19 (Naval Observa-
tory). | 13 42 | +22.0 | 12. 7
285. 8
292. 8
297. 8
3. 3
6. 8
8. 3 | +11. 5
+13. 0
+9. 0
+13. 0
+8. 0
+19. 0
-15. 5
+12. 5 | | 62
62
62
62
154
370 | | | | -29. 5
-25. 5
-22. 0
-15. 5
-11. 5
-7. 5
+1. 0
+8. 0
+17. 0 | 202. 0
206. 0
209. 5
216. 0
220. 0
224. 0
232. 5
239. 5
248. 5 | +18.0
-21.5
+16.5
-19.5
+10.5
+12.0
-11.5
-9.5 | | 247
31
37
494
6
 | | | June 20 (Naval Observa-
tory). | 14 1 | -30.5
-24.0
+40.0
+43.5
+46.5
+48.0 | 292. 4
298. 9
2. 9
6. 4
9. 4 | +9. 0
+13. 5
+8. 0
+19. 0
-16. 0
+12. 5 | 139 | 15
62
46
154
463 | | June 28 (Naval Observa-
tory). | 11 47 | +47. 0
+61. 5
-64. 5
-59. 5
-46. 5
-22. 5 | 278. 5
293. 0
153. 7
158. 7
171. 7
195. 7 | +6.0
+11.0
+4.5
+19.0
+8.0
+18.0 | 46 | 340
15
108 | 1,9 | | June 21 (Mount Wilson) . | 9 45 | 1 | 232. 0
271. 0
294. 0
295. 0
5. 0
7. 0
10. 5
11. 0 | -12.0
+16.0
+10.0
+15.0
+8.0
+18.0
-16.5
+12.0 | 119 | 20
213
23
17
13
58
764 | | | | -17. 0
-10. 0
-9. 0
-2. 5
+3. 0
+7. 5
+14. 5
+21. 5
+30. 0
+73. 5 | 201. 2
208. 2
209. 2
215. 7
221. 2
225. 7
232. 7
239. 7
248. 2 | +18. 0
-23. 5
+15. 5
-19. 5
+10. 5
+11. 5
-10. 0
+8. 5 | 62
123 | 216
31
463
15
22
154
309 | 1, 8 | #### POSITIONS AND AREAS OF SUN SPOTS-Continued [Communicated by Capt. C. S. Freeman, Superintendent U. S. Naval Observatory] [Data furnished by Naval Observatory, in cooperation with Harvard, Yerkes, and Mount Wilson Observatories] [The differences of longitude are measured from central meridian, positive west. The north latitudes are plus. Areas are corrected for foreshortening and are expressed in millionths of sun's visible hemisphere. The total area, including spots and groups, is given for each day in the last column] | | Eastern | н | eliog r apl | nic | Aı | rea | Total
area | |-----------------------------------|---------------------------|---|--|--|--------------------------------------|-----------------------------------|--------------------| | Date | standard
civil
time | Diff.
long. | Longi-
tude | Lati-
tude | Spot | Group | for
each
day | | 1928 June 29 (Naval Observatory). | h. m.
11 51 | -50. 5
-46. 5 | 0
154, 5
158, 5 | +5. 0
+19. 0 | | 25
46 | | | | | -45. 0
-32. 5
-14. 0
-9. 5
-4. 0
+3. 0
+10. 5
+20. 0
+28. 5 | 160. 0
172. 5
191. 0
195. 5
201. 0
208. 0
215. 5
225. 0
233. 5 | +5.0
+8.0
+10.0
+18.0
+17.0
-19.5
+11.5
-12.0 | 6
43
3
216

52
108 | 108
46
463 | | | June 30 (Harvard) | 8 50 | +34. 0
+44. 5
-36. 5
-35. 0
-22. 0
+6. 0
+23. 5 | 239. 0
249. 5
157. 0
158. 5
171. 5
199. 5
217. 0 | -10.0
+9.0
+6.5
+20.0
+9.0
+13.0
-20.0 | 65 | 3
93
56
39
573
880 | 1, 212 | | Mean daily area for June. | | +30. 5
+39. 0
+56. 5 | 224. 0
232. 5
250. 0 | +12.5
-12.5
+9.0 | 203
113 | 54 | 1, 983
979 | # PROVISIONAL SUNSPOT RELATIVE NUMBERS FOR MAY, 1928 [Data furnished by Prof. A. Wolfer, University of Zurich, Switzerland] | 1 | | | | | | |------------------|---------------------------------|----------------------------|----------------------------|----------------------------|-------------------------------| | 2
3
4
5 | 124
126
126
109
114 | 11
12
13
14
15 | 85
62
34
26 | 21
22
23
24
25 | 14
22
41
34
49 | | 6
7
8
9 | 117
142
133
146 | 16 | 16
15
13
15
0? | 26
27
28
29
30 | 40
54
112
139
150 | Number of observations, 31; mean, 75.6. # PROVISIONAL SUNSPOT RELATIVE NUMBERS FOR JUNE, 1928 [Data furnished by Prof. A. Wolfer, University of Zurich, Switzerland] | June | Relative
numbers | June | Relative
numbers | June | Relative
numbers | |------|---------------------|------|---------------------|------|---------------------| | 1 | 134 | 11 | 24 | 21 | 89 | | 2 | 133 | 12 | 7 | 22 | 109 | | 3 | 110 | 13 | 29 | 23 | 131 | | 4 | 100 | 14 | 25 | 24 | 145 | | 5 | 98 | 15 | 43 | 25 | 154 | | 6 | 90 | 16 | 53 | 26 | 134 | | 7 | 95 | 17 | 64 | 27 | 145 | | 8 | 74 | 18 | 62 | 28 | 126 | | 9 | 43 | 19 | 94 | 29 | 134 | | 10 | 32 | 20 | 63 | 30 | 114 | Number of observations, 30; mean, 88.5. ## AEROLOGICAL OBSERVATIONS By W. R. STEVENS Free-air temperatures for June were mostly below normal except at Washington. Aside from a gradual increase at Ellendale, departures from normal decreased with altitude. It was the coolest June of record at Broken Arrow and Royal Center, and with but one exception at Due West and Ellendale. The lowest June temperature was recorded during the month at the two latter stations. Relative humidities averaged slightly above normal. Vapor pressures were somewhat above normal at Broken Arrow, Due West and Washington, and below at Ellendale, Groesbeck and Royal Center. Resultant winds were almost entirely of southerly component at and near the surface. The area of winds of northerly component gradually increased with altitude from north to south, and at an altitude of 6,000 meters included practically the entire country. Every station obtained an unusually large number of kite flights shortly before the occurrence of thunderstorms and a few when the storms were in progress. In one instance it is believed that the wire was actually struck by lightning. The official in charge at Ellendale says in this connection: At about 2,600 meters out, while reeling in the flight of the 27th, the head kite broke away with about 200 meters of wire. The cause of the break is not definitely known but from the appearance of the kite bridle, which was slightly burned, it would seem that a mild lightning discharge struck it. This flight is of more or less interest in that it was made in a somewhat threatening condition. Light rain fell during the flight, beginning at 8.22 a. m. and con- tinuing through the flight. The conditions were ripe for thunderstorm development. Static discharges were high, some measurements being greatly in excess of 10,000 volts.—L. A. Warren. Special observations were made on the 28th, 29th and 30th at a number of selected balloon stations and forwarded to Detroit for the information of contestants in the international Gordon Bennett balloon race. Table 1.—Free-air temperatures, relative humidities, and vapor pressures during June, 1928 TEMPERATURE (° C.) | | Broke
row,
(233 m | | Due S. C.
met | (217 | Ellen
N. I
(444 n | | Groesbeck,
Tex. (141
meters) | | Royal Cen-
ter, Ind.
(225 meters) | | Washing-
ton, D. C. ¹
(7 meters) | | |----------------------------------|---|--|--|---|---|--|---|--|--|--|---|---| | Altitude
m. s. l.
(meters) | Mean | De-
par-
ture
from
nor-
mal | | Surface | 23. 4
23. 2
21. 1
19. 6
18. 3
17. 0
15. 9
14. 1
12. 6
7. 4
5. 6 | -1.6
-1.8
-1.8
-1.8
-1.6
-0.7
+0.2
+1.5 | 24. 2
21. 7
20. 2
18. 6
17. 2
15. 7
12. 6
9. 6
4
3. 6 | -1. 4
-1. 3
-1. 1
-0. 9
-0. 7
-0. 5
-0. 4
-0. 5
-0. 1 | 15. 8
14. 0
12. 5
10. 6
9. 2
6. 2
2. 9
-0. 1
-3. 3
-6. 1 | -2.5
-2.7
-2.8
-3.4
-3.5
-3.6
-4.0
-4.2
-4.5 | 23. 0
21. 0
19. 9
19. 7
19. 3
18. 9
16. 8
14. 0
10. 8 | -1.9
-1.5
-0.6
+0.1
+0.8
+1.0
+0.8 | 17. 2
15. 7
14. 3
12. 9
11. 8
10. 7
8. 5
6. 5 | -4.3
-3.2
-2.8
-2.7
-2.3
-2.1
-1.7 | 23. 5
21. 0
19. 0
17. 3
15. 5
13. 7
10. 4
7. 5
4. 6 | +2.
+0.
+0.
+0.
+0.
-0.
-0. | ¹ Naval air station.